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1 Introduction

In classic models of price competition, supracompetitive prices can be sustained when firms are

sufficiently forward-looking. For example, in typical models of collusion, all firms understand

the dynamic strategies of rivals and value future profits. In the presence of myopic rivals that

maximize static profits, collusion cannot be sustained under the usual assumption of simulta-

neous price setting behavior. Short-sighted behavior by rivals is an important source of fragility

in these models.1

Recently, however, the use of high speed pricing algorithms has spread to new markets,

allowing for the possibility of asymmetries in pricing behavior (Brown and MacKay, 2023).

Algorithmic pricing tools often emphasize the importance of reacting faster to competitors’ price

changes.3 Furthermore, the fact that pricing algorithms are not continually adjusted implies a

level of commitment to a pricing strategy. The adoption of these tools has not been uniform

across firms. Recent empirical work has documented that some firms employ high-speed pricing

algorithms that have a significant advantage in terms of their ability to observe rivals’ prices and

the speed in which prices can react.4

Motivated by these facts, we consider a model where a single sophisticated firm uses a high-

speed algorithm that allows it to update prices more quickly than its rival, and the firm has an

(imperfect) commitment to this algorithm across periods. We then ask: what outcomes can this

firm achieve unilaterally, even when its rivals are myopic and simply maximize static profits?

In our model, technology is characterized by the algorithm’s relative reaction time to its

rival’s prices and the (probabilistic) rate that it can update its algorithm each period. The naive

rival simply maximizes current period profits. Under an assumption that the algorithm punishes

deviations by playing the sophisticated firm’s one-shot best response function, the equilibrium is

unique. The model nests the standard Bertrand and sequential equilibria as special cases. When

there is no speed advantage and full commitment, the model yields the sequential equilibrium

where the sophisticated firm is the leader. Conversely, when the algorithm can react instantly

but there is no commitment across periods, the equilibrium is that where the sophisticated firm

is the sequential follower.

In the presence of both a speed advantage and multi-period commitment, the sophisticated

firm can obtain prices and profits that are substantially higher than the sequential payoffs. The
1To wit, several factors are viewed as important for facilitating collusion, including similar size and costs, pre-

dictability of demand, the observability of all rivals prices, and possibility for frequent direct communication.2
3For instance, a firms offering an algorithmic pricing tool notes that “businesses can compete more effectively by

responding quickly” (dealhub.io, 2023). Another advertises that “a fast reaction to your competitors’ price variations
is essential to be aggressive and competitive in the world of online commerce” (competitoor.com, 2023). One third-
party pricing algorithm offers a algorithm that updates prices hourly and a premium version that “reacts to changes
your competitors make in 90 seconds” in order to “beat competitors with super-fast repricing”’ (repricer.com, 2023).

4Brown and MacKay (2023) show that the pricing technology for large online retailers varies from once-per-week
updates to updates that occur multiple times per hour. The adoption of high-speed pricing algorithms has also been
observed in other settings (e.g., Assad et al., 2022; Aparicio et al., 2021).
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speed advantage allows the sophisticated firm to coerce its myopic rival into playing higher

prices; commitment across periods prevents the sophisticated firm from deviating from its own

optimal long-run strategy. Thus, the commitment plays an important role in allowing the so-

phisticated firm to “tie its hands.” The commitment feature also distinguishes our model from

earlier work by Brown and MacKay (2023), which did not allow for multi-period commitment.

These results provide some context for an understanding of the potential impact of pricing

algorithms. With full commitment, the sophisticated firm can always guarantee at least the

sequential (or Stackelberg) payoffs. However, the potential impacts on equilibrium prices can

be far greater when the firm also has a speed advantage. Moreover, even with imperfect com-

mitment, faster pricing can still yield equilibrium outcomes where the sophisticated firm earns

more than its share of the symmetric collusion profits. In some environments, the fast firm

may dictate that the slower firm set prices above the joint profit-maximizing price, leading to a

greater deadweight loss and lower welfare than that obtained under joint profit maximization.

Because these outcomes do not depend on cooperative behavior by other firms, they are

in some ways more robust than standard models of supracompetitive prices. In the baseline

model, the myopic firm is fully informed, but the outcomes can also be generated under alter-

native assumptions of naive behavior by rival firms. First, the naive firm could be memoryless,

in which case it cannot condition its action on past play. Second, the naive firm may not even be

aware that it is playing a game against a rival; instead, it may attempt to maximizing a function

of its own price only. We also consider the case in which the naive firm is not fully informed,

but learns over time.

While we start by examining trigger strategies, the punishment need not be that drastic.

Our analysis of pricing rules that are a linear function of the slower rival’s price demonstrates

that such strategies can lead to collusive prices while potentially raising less antitrust scrutiny

and being robust to the use of simple profit optimization by the slower firm.

There is growing concern about collusion in online markets, especially when firms use al-

gorithms (Harrington, 2018). The literature has has largely focused on simultaneous move

games, including a literature on collusion with artificial intelligence (Waltman and Kaymak,

2008; Calvano et al., 2020). It is well known that in simultaneous move games, high frequency

pricing implies a smaller per period discount rate, making collusion easier to sustain when firms

have perfect monitoring (e.g., Abreu et al., 1991). However, asymmetries—typically in terms of

costs or demand—are generally believed to make collusion more difficult to sustain (Scherer,

1980; Tirole, 1988). One exception is asymmetries in the discount factor or pricing speed across

markets, which can facilitate collusion (Bernheim and Whinston, 1990). A smaller literature

has focused on alternating-move games as in Maskin and Tirole (1988). In particular, Klein

(2021) examines collusion with machine learning algorithms in a sequential game. Finally, the

literature on price leadership and collusion has examined the incentives to collude when one

firm announces a price and a rival follows (e.g., Mouraviev and Rey, 2011). In previous work,
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Brown and MacKay (2023) examine competitive (Markov perfect) outcomes when firms may

differ in the speed at which they set prices. We are not aware of other research that examines

collusion in settings where firms differ in their pricing frequency.5

The paper proceeds as follows. We introduce the model in Section 2. In Section 3, we

discuss the equilibrium concept and provide benchmark cases. We characterize the general

problem and provide examples in Section 4. In Section 5, we introduce the idea of learning

for the naive firm, and we show how the sophisticated firm can obtain the collusive or coercive

equilibria even with simple linear strategies. Section 6 indicates how our results can be gener-

alized to N -firm oligopolies where a single firm has a pricing speed advantage and the other

N − 1 firms are naive.6 Section 7 concludes.

2 Model

We analyze a duopoly model in which a sophisticated firm can commit to an algorithm that

automatically updates prices, while its naive rival is myopic and has simple price-setting tech-

nology. We discuss how our results may be generalized to an N -firm oligopoly in Appendix

6.

2.1 Environment

Two firms, a and b, compete in an environment where profits are determined by prices, (pa, pb).

Firm a is sophisticated and has a pricing algorithm, while firm b is naive and does not have an

algorithm. Time is continuous and is given by t ∈ [0,∞], while periods are defined by discrete

intervals indexed by t ∈ {0, 1, 2, ...∞}. We define the length of a period as the frequency that

firms without algorithms can update prices. Thus, firm b can update prices at the beginning of

each period, t ∈ N0.

Demand arrives in continuous time. The instantaneous profit flow function for firm i is

time-invariant and is given by πi(pi, p−i). We assume the profit functions are quasi-concave and

have a unique maximum with respect to a firm’s own price.
5Our paper also relates to a previous literature examining games in which a single long-run player faces a

succession of repeated short-run players. The classic application is one in which an incumbent faces a new (short-
run) potential entrant in each period, as studied by Milgrom and Roberts (1982) and Kreps and Wilson (1982).
Fudenberg and Levine (1989) and Fudenberg et al. (1990) provide folk-theorem style analysis for feasible payoffs
for a general class of games with a single long-run player. Our work contributes to this literature by considering
repeated games of price competition and the advantage conferred to a single firm through the adoption of a pricing
algorithm. In our setting, we consider repeated interactions with the same rival and interpret short-run behavior as
arising from naive play.

6When the faster firm can observe each of the prices of its rivals, it can specify a punishment to each rival’s
possible deviation that ensures no rival deviates in equilibrium.
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2.2 The Sophisticated Firm

The sophisticated firm a maximizes discounted future profits over an infinite horizon. Firm a

has a discrete discount rate of profits in future periods given by β > 0.7

At time t = 0, and at future opportunities indexed by τ , firm a chooses a pricing algorithm,

Aα,γ
τ (pbt, xt, t). The algorithm is characterized by speed and commitment parameters, α and γ,

which we describe below. The algorithm sets prices according to

pat = Aα,γ
τ (pbt, xt, t) ≡

ρτ (xt) t− ⌊t⌋ ≤ α

στ (pbt, xt) t− ⌊t⌋ > α
(1)

where ⌊t⌋ is the floor function that yields the greatest integer less than t, i.e., the beginning

of the period. The algorithm is characterized by an initial price-setting function ρτ (xt) and an

update function στ (p̂bt, xt) that can depend on observable state variables, xt. The initial-price

setting component ρτ (xt) is used to set prices at the beginning of each period, e.g., pa0 = ρ0(x0).

Within each period, after the elapsed interval α ∈ [0, 1], the fast firm can observe pbt and adjust

its price to according to the update function, e.g., paα = σ0(p̂bt, x0). We call α the reaction time,

and it captures the algorithm’s ability to update prices more frequently.

These features reflect features of software that is used to update prices automatically. At the

beginning of each period, the algorithm may update the price in response to new information

captured by xt. During these updates, firm b can also change its price, but the decision of firm

b is not known in advance by the algorithm. However, the algorithm can observe pbt chosen

in that period and then update with a lag α. One can interpret our equilibrium analysis as

conditional on a sequence of state variables, therefore, going forward, we suppress xt in our

notation.

Figure 1 shows the timing of price adjustments. Both firms can adjust prices at t, firm a can

adjust at t + α, and firm b must wait fraction 1 − α until t + 1 to adjust its price in response.

When γ = 0, the model nests a standard simultaneous move game when α = 1 and a sequential

price-setting game where firm b moves first when α = 0.8 In practice, differences in pricing

frequency may provide the faster firm multiple opportunities to adjust prices in each period.

However, given the assumptions about our environment, only the first opportunity to adjust

price within the period is consequential. In this way, α can be interpreted as the lag between

firm b setting price and the first opportunity for firm a to readjust its price in response.9

7For simplicity, we will assume that there is no within-period discounting, consistent with the idea that the period
is very short in many real-world settings with pricing algorithms. However, this is without loss of generality since
including within-period discounting is equivalent to defining alpha as the subjective reaction time. Consider any α
and any instantaneous within-period discount rate ν. Then there exists an objective (non-discounted) reaction time

α̃ such that
∫ α̃
0 e−νtdt∫ 1
0 e−νtdt

= 1−e−να̃

1−e−ν . For a given δ, the mapping of α to α̃ is one-to-one.
8We discuss these connections in more detail in Section 3.
9In the case of high-speed pricing algorithms, α is determined by the time required for software to observe a rival’s

price and update price in response. In online retail markets, a large pricing speed advantage has been observed for
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Figure 1: Timing with Differences in Pricing Frequency

Period t Period t+ 1

Firm b

Firm a

α 1− α

Notes: Figure shows timing of pricing when firm a, the sophisticated firm, can react with lag α. Circle
markers represent opportunities to adjust prices. The gray circle represents an opportunity to adjust price
that is inconsequential in the model.

The firm has an indefinite commitment to the algorithm over future periods, which is cap-

tured by γ. When the firm is not updating the algorithm, the price is set automatically by the

algorithm at each price change opportunity, e.g., t ∈ {α, 1, 1+α, 2, 2+α...}. At the beginning of

each period, with probability γ, firm remains committed to the algorithm and cannot manually

update the algorithm or its price. With probability 1− γ, the firm can update the algorithm, at

which point it also picks a new initialization price.

The sophisticated firm’s decisions can be expressed as a dynamic problem:

V0(t) =max
A|pbt

απa(ρ, pbt) + (1− α)πa(σ(pbt), pbt) + βγV1(t+ 1,A) + β(1− γ)V0(t+ 1) (2)

V1(t,A) =απa(ρ, p
∗
bt) + (1− α)πa(σ(p

∗
bt), p

∗
bt) + βγV1(t+ 1,A) + β(1− γ)V0(t+ 1) (3)

starting with t = 0 and for each integer t thereafter. V0(t) provides the value function when

firm a can update the algorithm, and V1(t,A) provides the value function when the firm is

committed to algorithm A. Here, p∗bt gives the optimal reaction by firm b to A. Firm a can

anticipate the optimal response of firm b in future periods while it remains committed to the

algorithm.

2.3 The Naive Rival

We now discuss the naive rival. In the model, we assume firm b is myopic and sets prices to

maximize current period profits only.

Assumption A1. In each period t ∈ {0, 1, 2, ...}, firm b solves the problem

max
pb|Aτ

απb(pb, ρτ ) + (1− α)πb(pb, στ (pb)) (4)

certain firms (implying α is small). Brown and MacKay (2023) consider the differences in pricing frequency among
major U.S. online retailers. A slower retailer updates prices once at the beginning of each week, whereas another
retailer updates the price once each day. At the beginning of the week, the firms set prices simultaneously. Given
that the fast firm can respond to the slow firm’s price the following day, α = 1/7 in this case.

5



We initially assume that the firm understands Aτ and internalizes the sophisticated firm’s re-

action within the period. We call firm b naive in that it does not anticipates what happens

across periods. We make this restriction so that the rival acts in its own short-run best interest.

Such “short-termism” may arise due to, e.g., misalignment between managerial incentives and

shareholders. As we will be made clear in the sections that follow, this behavior by a naive

rival will make standard collusive equilibria unattainable. The naive firm treats each period as

a one-shot game and acts as if it is maximizing its static period profits.

Two other behavioral assumptions can also generate this naive behavior. First, the naive

firm may be memoryless, in that is not able to condition its actions on the history of past play.

Such an assumption would eliminate the ability of the firm to form contigent strategies that

punish the sophisticated firm. Second, the slow firm may be non-strategic, in that it is unaware

that it is playing a dynamic game with rival firms. For example, it may (falsely) believe that it

is maximizing the profit function π̄b(pb) that does not depend on the strategic variable pa. In

these two cases, the slower firm’s solution to the repeated game is equivalent to the myopic

solution, even though the slow firm values future profits. Thus, all three assumptions give rise

to behavior that can be captured by the myopic case.

Myopia and memoryless behavior are distinguished from the non-strategic behavior in that

the slow firm may be fully aware of the actions of the fast rival and be able to predict its actions.

In these cases, the slow firm is limited in terms of how far forward or backward it looks in time

when deciding its actions.

In the non-strategic case, a firm does not internalize the fact that it is playing a game with

strategic rivals. This is known to be the case in various oligopolistic markets, such as as airline

ticket pricing.10 The slow firm may be modeled as simply trying to maximize profits as a

function of a single input (its own price). Consider, for example, a firm that sets prices at the

beginning of the week, observes profits at the end of the week, and attempts to learn which

price yields the highest profits. The firm specifies its profit function as πb(pb). In truth, the

profit function depends also on the price of the faster firm, i.e., πb(pb, pa), but the slow firm

is not aware of this. The faster firm can vary pa throughout the week to manipulate the slow

firm into learning that the optimal pb is a particular target price, for example, the fully collusive

price.

Standard models of collusion are not attainable in equilibrium if any of the above behaviors

are present. All firms (1) must have positive valuations of future periods, (2) must be able to

condition on the history of play, and (3) must be aware of the strategies of rival firms. We will

show this by examining benchmark equilbria in the following section.

In Section 5, we relax the informational assumptions and consider the case in which the

slow firm learns about the algorithm over time.
10For instance, Hortaçsu et al. (2022) document that a major airline does not internalize the existence of any

competition when setting ticket prices regardless of the market structure.
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3 Equilibrium Concept and Benchmark Cases

3.1 Equilibrium Concept

Here, we define the equilibrium concept, and we explore benchmark equilibria under different

assumptions about frequency and commitment. These benchmark cases help to build intuition

for these features and motivate the general analysis that we present in Section 4.

Equilibrium is characterized by a sequence of realized algorithms {At} and prices {pbt}
such that equations (2), (3), and (4) are satisfied for all t. We use a standard Nash equilibrium

condition. When choosing an algorithm, firm a takes as given the current price of firm b. When

choosing a price, firm b takes as given the algorithm chosen by a.

With time-invariant profit functions, he problem is stationary. We can exploit the fact that

V0(t) = V0(t
′) for t, t′ ∈ N to express the sophisticated firm’s problem from equations (2) and

(3) as:

Ṽ (t) =max
A|pbt

απa(ρ, pbt) + (1− α)πa(σ(pbt), pbt) (5)

+
∞∑

s=t+1

(βγ)s (απa(ρ, p
∗
bt) + (1− α)πa(σ(p

∗
bt), p

∗
bt))

where Ṽ (t) = 1−β
1−βγV0(t). Going forward, we will make use of the fact that

∑∞
s=t+1(βγ)

s = βγ
1−βγ

to simplify notation.

Because the profit function πa is quasi-concave (with a unique maximum), Ṽ (t) is quasi-

concave. With mild restrictions on σ(·), the equilibrium is unique and coincides with Markov

Perfect equilibrium.11 The naive rival does not account for future profits or respond to the

history of play. Thus, its presence eliminates a large class of equilibria that can be supported in

repeated games.

To see this, consider the case when α = 1 and γ = 0, so that the algorithm provides no

commitment and no speed advantage. The objective functions become

Firm a : max
A|pbt

πa(ρ, pbt) (6)

Firm b : max
pb|Aτ

πb(pb, ρτ ) (7)

which corresponds to the one-shot simultaneous price-setting game. Thus, the only subgame

perfect equilibrium is the Bertrand-Nash equilibrium. Though dynamic price setting games may,

in general, yield multiple equilibria, the presence of the myopic firm greatly reduces the set of

outcomes that can be sustained in equilibrium.
11Specifically, there is a unique σ∗(·) that is a (weakly) dominant strategy for firm a, even when other update

functions also are consistent with equilibrium behavior, including those that yield the same outcomes.
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We now consider two benchmark cases. First, we consider the case where the algorithm has

some commitment but no speed advantage. Next, we consider the case with a speed advantage

but no multi-period commitment. This second case corresponds to the asymmetric commitment

model analyzed in Brown and MacKay (2023).

3.2 Multi-Period Commitment Only

In some settings, the algorithm may provide a commitment advantage but no speed advantage.

This is the case in the literature on learning algorithms and competition (e.g., Calvano et al.,

2020; Johnson et al., 2021; Asker et al., 2022), which have firms that set prices simultaneously.

The analysis here can be roughly thought of as an extension of these models, where one firm

can endogenously choose the optimal algorithm and the other firm uses learning algorithm that

recovers its the true payoffs. We will not discuss learning here but instead describe the long-run

payoffs.

With no speed advantage, α = 1. Firm a has the objective function

max
A|pbt

πa(ρ, pbt)︸ ︷︷ ︸
Simultaneous

Pricing Incentive

+
βγ

1− βγ
πa(ρ, p

∗
bt)︸ ︷︷ ︸

Leader
Pricing Incentive

(8)

while firm b maximizes maxpb|Aτ
πb(pb, ρτ ). The objective function for firm a differs from that

of the one-shot benchmark due to the term βγ
1−βγπa(ρ, p

∗
bt), which is positive as long as βγ > 0.

The sophisticated firm balances the profits in the current period, conditional on pbt, against the

profits in future periods where the naive rival might update its price.

The second component in the objective captures the pricing incentive of a leader in a se-

quential pricing game. In equilibrium, p∗bt will be given by firm b’s static best response function,

p∗bt = Rb(ρ). Because a anticipates profits in future periods that it is commuted to the algo-

rithm, it internalizes the reaction of its rival. In the limiting case where firm a is infinitely

patient (β = 1) and has perfect commitment (γ = 1), the outcome is equivalent to a sequential

price-setting game in which firm a is the (Stackelberg) leader. For example, in a setting in

which the naive rival sets prices frequently (say once per day), and firm a updates its algorithm

once per month on average, the outcome may be similar to sequential pricing, as firm a will put

a lot of weight on the evolution of profits over future periods.

More generally, the equilibrium can be characterized as follows:

Proposition 1. When the algorithm enables commitment (γ > 0) but no speed advantage (α = 1),
the equilibrium lies along the naive firm’s best response function between the simultaneous price-
setting equilibrium and the sequential price setting equilibrium where the sophisticated firm is the
leader.
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Proof. This follows directly from the fact that the sophisticated firm maximizes a weighted sum

of the simultaneous and sequential profits. □

When firms produce substitute goods and prices are strategic complements, both firms re-

alize higher prices compared to the price-setting (Bertrand-Nash) equilibrium. This follows

similar logic of Proposition 2 of Brown and MacKay (2023). In contrast to the asymmetric

commitment model of Brown and MacKay (2023), when firms a and b have identical profit

functions, the firm with the algorithm has a higher price than its naive rival.

3.3 Faster Pricing Only

We now consider the case in which firm a has no multi-period commitment (γ = 0) but the

algorithm enables faster pricing updates (α < 1). The period t objective function for firm a

when it can update its algorithm becomes

max
A|pbt

απa(ρ, pbt)︸ ︷︷ ︸
Simultaneous

Pricing Incentive

+(1− α)πa(σ(pbt), pbt)︸ ︷︷ ︸
Follower

Pricing Incentive

(9)

while the objective function for firm b remains as given in equation (4).

This problem is equivalent to the asymmetric commitment model analyzed by Brown and

MacKay (2023). Following that analysis, it is weakly dominant for firm a to choose an update

function that corresponds to its static best-response function, σ(·) = Ra(·). In Section 4, we

make a specific restriction on σ(·) that nest this as a special case and yields a unique equilibrium

for the more general problem.

In contrast to the above case with only multi-period commitment, the sophisticated firm

balances the simultaneous price-setting incentive with the sequential price-setting incentive

where it acts as the follower. Thus, following Proposition 2 from Brown and MacKay (2023), the

equilibrium lies on the sophisticated firm’s best response function, between the simultaneous

and the sequential equilibrium. The parameter α indicates how much weight the naive firm

puts on the period before the algorithm update. As above, this results in higher prices for both

firms when the products are substitutes and prices are strategic complements. However, this

case will yield lower prices for the sophisticated firm, instead of higher prices, when the firms

have identical profit functions.

In the limiting case where α = 0, the algorithm yields the sequential price-setting equilib-

rium, with firm b acting as the leader and firm a acting as the follower. Thus, the two features

of the algorithms we study—speed and multi-period commitment—can generate sequential

equilibria where the sophisticated firm takes on either the leader or follower role.
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Figure 2: Benchmark Equilibria, with Examples

Commitment

βγ = 0 (Low) βγ = 1 (High)

Reaction Time
α = 1 (Slow)

Simultaneous
Bertrand-Nash

(pa, pb) = (1.00, 1.00)

Sequential,
Firm a is Leader

(pa, pb) = (1.14, 1.05)

α = 0 (Fast)
Sequential,

Firm a is Follower

(pa, pb) = (1.05, 1.14)

Maximal Coercion

(pa, pb) = (1.93, 2.15)

3.4 Discussion and Examples

We have thus far considered three benchmark cases. First, we demonstrated that with simul-

taneous price-setting and no multi-period commitment, the unique equilibrium is the one-shot

Bertrand-Nash equilibrium, corresponding to the Markov Perfect equilibrium with simultaneous

pricing. Then, we showed that full commitment or instantaneous reactions can yield sequential

price-setting equilibria, though the roles of the algorithmic firm depend on the features of the

algorithm.

In Section 4, we consider the general case where α < 1 and βγ > 0. We call these equilibria

coercive. In general, these need not lie between any of the above benchmark cases, but instead

expand the set of possible feasible outcomes. An extreme case is one in which α = 0 and

βγ = 1, in which firm a is infinitely patient, has full commitment, and can instantaneously

react to the price of firm b in any period. We call this limiting case maximal coercion.

To illustrate these cases, here and elsewhere in the paper, we use a simple symmetric linear

demand system given by

Di(pi, p−i) = 1−
(
1

4
+

d

2

)
pi +

d

2
p−i (10)

where d ≥ 0 is an inverse measure of product differentiation. This demand system can be

derived from the quasilinear quadratic utility model (Singh and Vives, 1984). The goods do

not compete when d = 0 and are perfect substitutes when d = ∞. Without loss of generality,

marginal costs are normalized to zero.

Figure 2 summarizes the benchmark cases for the limiting values of α and βγ. Equilibrium

prices are reported for the demand system with d = 1. The implications for profits are substan-

tial. The sophisticated firm earns profits of 0.75 in the Bertrand-Nash benchmark, 0.76 as the

sequential leader, 0.82 as the sequential follower, and 1.21 in the coercive equilibrium. Thus,

moving from the Betrand-Nash benchmark to maximal coercion increases the profits for firm a
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by 61 percent. By comparison, the collusive price levels are given by (pa, pb) = (2, 2), yielding

profits of 1.00 to each firm. With maximal coercion, the sophisticated firm can obtain higher

profits for itself than the collusive outcome.

4 Algorithmic Coercion

4.1 General Problem

We now consider the general case of algorithmic coercion. We reformulate equation (5) as a

constrained optimization problem. We ask whether a target price pair (pTa , p
T
b ) can be main-

tained in equilibrium.

Specifically, we have firm a choose the target prices (pTa , p
T
b ) that maximizes its discounted

profits, subject to the algorithm technology and the incentive-compatibility constraints for both

firms. This yields the following objective:

max
(pTa ,pTb )|pbt

απa(ρ, pbt) + (1− α)πa(σ(pbt), pbt) +
βγ

1− βγ
πa(p

T
a , p

T
b ) (11)

s.t. (i) ρ = pTa (12)

(ii) σ(pb) =

pTa if pbt = pTb

Pa(pb) if pbt ̸= pTb

(13)

(iii) pTb = argmax
pb|A

απb(pb, ρ) + (1− α)πb(pb, σ(pb)) (14)

which is obtained by plugging in the target prices into equation (5).

The objective function is specified in terms of three constraints: (i) firm a chooses the initial

price ρ to be equal to its target price, (ii) the update function follows provides firm a’s target

price as long as firm b follows its target price, and (iii) the target price for firm b satisfies its

incentive-compatibility constraint.

When firm b does not choose pbt = pTb , the update function of the algorithm follows a po-

tentially arbitrary punishment function, Pa(pb). Here, we assume that the punishment function

is simply the best-response function for firm a:

Assumption A2. The punishment function is equal to firm a’s static best-response function, Pa(·) =
Ra(·).

Though one could consider more extreme forms of punishment, it is typical in the literature on

collusion to assume punishment strategies that are consistent with short-run, non-cooperative

behavior. We follow that convention here.

There is a unique Markov Perfect equilibrium characterized by the choice of A and pb that

satisfy the above conditions. Uniqueness is obtained under assumptions A1 and A2 when the
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Figure 3: Prices and Profits with Coercive Trigger Strategies and Full Commitment
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Notes: Panel (a) shows prices and panel (b) shows profits under Bertrand competition with simultaneous
pricing, coercion in which the faster firm uses a trigger strategy to maximizes its own profits with full com-
mitment (βγ = 1), and joint profit maximization. The firms simultaneously set prices at the beginning of
the period and then the fast firm can adjust price with reaction time α. Assumes d = 1 under linear demand
given by equation (10).

profit functions are well-behaved.12

4.2 Equilibrium Outcomes

Figure 3 illustrates equilibrium prices (panel (a)) and profits (panel (b)) in the case with full

commitment (βγ = 1) and different values for α. The equilibria are generated from the linear

demand system with a differentiation parameter of d = 1. The solid blue line represents the

algorithmic firm, while the dashed blue line represents the naive firm. For comparison, we also

plot the joint profit maximizing prices and profits (black line) and the prices and profits for

Bertrand competition (yellow dotted line).

Depending on the relative pricing reaction time, there are three regions that determine the

relative prices of the slow and fast firm. With very fast pricing, the fast firm can coerce its

slower rival into setting prices above the fully collusive price. The fast firm can then undercut

this price and earn higher profits. For the intermediate range of pricing speed, the fast firm is

able to incentivize the slower rival to set a higher price than the fast firm but cannot coerce the

slower rival to set a price above the fully collusive price.

When the fast firm does not have much of speed advantage, it is instead optimal for the

fast firm to target a higher price than the slow firm and to use its threat of punishment to

prevent the slow firm from lowering its price further. With no speed advantage, we obtain the
12Under more general forms for the punishment function, multiple equilibrium can be obtained; thus, A2 can

alternatively be viewed as a device for equilibrium selection.
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Figure 4: Prices and Profits with Coercive Trigger Strategies by Level of Commitment
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(b) Profits

0 0.2 0.4 0.6 0.8 1
Commitment (.-)

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

P
ro
-
t

Bertrand competition
Coercion (-rm a)
Coercion (-rm b)
Joint pro-t max

Notes: Panel (a) shows prices and panel (b) shows profits under Bertrand competition with simultaneous
pricing, coercion in which the faster firm uses a trigger strategy to maximizes its own profits with maximum
speed (α = 0), and joint profit maximization. The firms simultaneously set prices at the beginning of the
period and then the fast firm can adjust price with reaction time α = 0. Assumes d = 1 under linear demand
given by equation (10).

sequential equilbrium as discussed in Section 2. In all cases, prices of both firms are above the

Bertrand price.

When the fast firm’s pricing speed advantage is small, the slower firm earns greater profits

than the fast firm. Around α = 0.62, the lines for firm a and firm b intersect. These values reflect

the case when the incentives from commitment and the pricing advantage balance each other

out, yielding a symmetric increase in prices and profits. Such cases coincide with a symmetric

partial collusion equilibrium.

Figure 4 shows the equilibrium cases when commitment (βγ) varies and α = 0. For these

cases, firm a always prices lower than firm b and earns greater profits. Panel (b) shows that

firm b only earns profits approximately equal to the competitive profits in all cases. Thus, firm a

can use the threat of an immediate reaction to incentivize firm b to set higher prices and extract

all of the resulting producer surplus. The extent to which firm a can do this in Markov Perfect

equilibrium depends on its ability to commit. When commitment is low, firm a has a short-run

incentive to reduce prices given the high prices of its rival.

There is an important interaction between commitment and reaction time. With only com-

mitment or only fast reactions, firm a is bounded in its ability to raise prices to the sequential

prices and payoffs. Appendix Figures A-3 and A-4 illustrate the cases of βγ = 0 and α = 0,

respectively, showing a modest increase in prices and profits. In the presence both features—as

illustrated by moving right to left in Figure 3 or left to right in Figure 4 —a sophisticated firm

can obtain substantially higher prices and profits. These strong interaction effects persist at

13



Figure 5: Firm a Profits by Pricing Speed and Commitment

Notes: Shows profit regions of firm a for different values of reaction time (α) and commitment (βγ). Region
I indicates profits greater than under joint profit maximization (splitting collusive profits), region II indicates
profits greater than sequential follower, region III indicates profits greater than sequential leader, and region
IV indicates profits greater than under Bertrand competition. Assumes d = 1 under linear demand given by
equation (10).

intermediate values of commitment and reaction time, as illustrated in Appendix Figures A-1

and A-2.

Figure 5 plots the profits obtained by firm a under all combinations of commitment and

reaction time. Region I indicates profits greater than symmetric collusion, region II indicates

profits greater than those obtained by a sequential follower, region III indicates profits greater

than those obtained by a sequential leader, and region IV indicates profits greater than under

Bertrand competition. Appendix Figure A-5 shows the same for firm b.

For this demand system, firm a can obtain profits greater than the sequential leader for

almost all values of α and βγ. Moreover, many combinations of commitment and speed can

allow the sophisticated firm to obtain greater profits than the symmetric collusion payoffs.

The equilibrium yields lower consumer surplus than under Bertrand competition. For most

cases with this demand system, consumer surplus is lower than under the sequential equilib-

rium. When βγ is close to 1 and α is close to zero, consumer surplus is lower than that obtained

under symmetric collusion (joint profit maximization). We provide a plot of consumer surplus

in Appendix Figure A-6

This analysis highlights how two features of algorithms—speed and commitment—can yield

higher prices and provide a substantial advantage to the adopting firm. This is the case even

in the somewhat extreme conditions we assume in our baseline model, where the rival is only

acting it its short-run best interest.
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5 Incorporating Learning

In the above analysis, we show how a faster firm may unilaterally implements supracompeti-

tive prices when the slow firm understands (explicitly or implicitly) the potential punishment

strategy and resulting profits. We now consider the case in which the slow firm is potentially

uninformed about the strategy used by the fast firm or its own profit function. Instead, the

firm learns over time using an optimization algorithm. We ask whether the fast firm can induce

higher prices without announcing a strategy.

5.1 Simple Learning and Linear Strategies

In many settings, it may be reasonable to assume that an equilibrium arises not from intro-

spection by the players but rather from an iterative process of adaptive learning (Fudenberg

and Levine, 2016). Models of learning in economic games include fictitious play, reinforcement

learning, and gradient learning. In a game in which two firms play a simultaneous pricing

game and use these learning strategies to maximize static profits, the Betrand-Nash equilib-

rium is generally the unique outcome if there is convergence.13

We focus on gradient learning by the slower firm. Gradient learning is a particularly naive

strategy that requires minimal inputs. The slow firm does not take into account the actions or

strategies of the faster rival, nor does it form beliefs about the economic environment. Gradient

learning captures the fact that many firms simply adjust prices in the direction that increases

static profits until profits are maximized. In particular, we assume that the slow firm begins

with a best guess of its optimal price (p̂0b). The firm updates its price based on the price in

period t following

p̂t+1
b = p̂tb + λ

∂πb(p̂
t
b)

∂p̂tb
. (15)

Gradient learning is also closely related to A/B testing in which firms use price experiments

to determine whether to raise or lower prices, a commonly uses approach in online markets.14

In a simultaneous game in which both firms use gradient learning, the strategies converges

to the Betrand-Nash equilibrium as long as price adjustments are relatively smooth (λ is not

too large).15 We consider the case in which the slow firm employs gradient learning and ask

whether the fast firm can implement a pricing strategy that results in supercompetitive profits.

In contrast to the previous sections, we assume here that the fast firm adopts a linear pun-

ishment strategy instead of a discontinuous trigger strategy. In particular, for a target price pair
13Fudenberg and Levine (2016) provide an overview of this literature. Asker et al. (2022) examine reinforcement

learning and finds that synchronous reinforcement learning, in which firms can observe a rival’s price and use this
information to aide learning, converges to Bertrand-Nash. Asynchronous reinforcement learning, in which firms do
not observe rival’s price, can result in supercompetitive prices.

14Gradient learning is also similar to the simple “asynchronous” learning assumptions of Asker et al. (2022).
15See Anufriev et al. (2013).
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(pTa , p
T
b ), the faster firm chooses pa = pTa at the beginning of the period and then updates its

price according to the linear pricing rule:

ra =

pTa − γ(pTb − pb) if pTa − γ(pTb − pb) ≥ 0

0 otherwise
(16)

Thus, the punishment depends on how far from the target price the slow firm deviates, and the

degree of punishment is captured by γ.

We focus on linear strategies because the linearity helps ensure that experimentation by

the slower firm will converge to desired price of the faster firm, for many different learning

approaches of the rival firm (e.g., using Newton’s method). In practice, pricing strategies that

are linear in rivals price are common.

Throughout, we assume that the fast firm can fully commit to the linear pricing rule given

by equation (16). This also implies the firm does not adjust its strategy to manipulate the rate

of learning of the slower firm. Furthermore, we focus on the case with linear demand given by

equation (10).

5.2 Coercive Linear Strategies with Simple Learning

We now solve for the pricing rule and equilibrium prices. The fast firm attempts to induce the

target price vector (pTa , p
T
b ). To constrain the slope of the reaction by the faster firm, we assume

that the linear slope of the pricing rule passes through the point (0, 0). Linear strategies of this

form have the property that the faster firm’s price changes in response to any non-negative price

chosen by the slower firm. Using the pricing rule ra = pTa − γT (pTb − pb), this implies γT = pTa
pTb

.

In each period, the fast firm chooses its initial price pa and target price for slow firm to

maximize its own profit, such that the slow firm is maximizing static profit

max
pa,pTb

[
αpaDa(pa, pb) + (1− α)

papb
pTb

Da(
papb
pTb

, pb)

]
s.t. pb = argmax

p′b

[
αp′bDb(p

′
b, pa) + (1− α)p′bDb(p

′
b,
pap

′
b

pTb
)

] (17)

The slow firm’s first-order condition is given by

α
[
Db(pb, pa) + pbD

1
b (pb, pa)

]
+(1−α)

[
Db(pb,

papb
pTb

) + pb
pa

pTb
D2

b (pb,
papb
pTb

) + pbD
1
b (pb,

papb
pTb

)

]
= 0

(18)

The fast firm’s pricing rule can be written in terms of the implicit function p∗b(pa) that solves
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this first-order condition. The pricing-rule implies that

ra =
pap

∗
b(pa)

pTb
. (19)

In equilibrium, the fast firm sets the same price throughout the period so pa = ra. Let p∗a(p
T
b )

be the fast firm price as a function of the target that solves pTb = p∗b(pa) for pa.

The fast firm then solves the following problem:

max
pTb

p∗a(p
T
b )Da(p

∗
a(p

T
b ), p

T
b ). (20)

The solution is given by the first-order condition

p∗a(p
T
b )

(
∂p∗a(p

T
b )

∂pTb
D1

a(p
∗
a(p

T
b ), p

T
b ) +D2

a(p
∗
a(p

T
b ), p

T
b )

)
+

∂p∗a(p
T
b )

∂pTb
Da(p

∗
a(p

T
b ), p

T
b ) = 0 (21)

This first-order condition provides the fast-firm optimal price for the slow firm, pTb . The

optimal price for the fast firm is then pTa = p∗a(p
T
b ). The solution reflect the fact that the fast

firm chooses the target price for the slow firm knowing that the slow firm will maximize profit.

Proposition 2. For the linear demand case, when the fast firm implements the optimal linear
pricing rule, the slow firm profits are increasing in price for any pb < pTb and slow firm profits are
decreasing in price for any pb > pTb . Therefore, when firm b uses gradient learning it will always
converge to the target price chosen by firm a.

Proof. First, we solve explicitly for equilibrium target prices

pTa = − 6d+ 2

2αd2 + 4d+ 1

pTb =
2− 2(α− 6)d(d+ 1)

(2d+ 1)(2d(αd+ 2) + 1)
.

This yields the pricing rule

ra(pb) = − (2d+ 1)(3d+ 1)

(α− 6)d(d+ 1)− 1
pb.

The slow firm chooses price pb. The slow firm’s profit function is given by π̃b(pb) = απb(p
∗
b , p

T
a )+

(1− α)πb(p
∗
b , ra(pb)). We solve for it explicitly:

π̃b(pb) =
pb(d(α+ 5αd+ 4) + 1)(2d(2(α− 6) + αd(2dpb + pb + 2) + 4d(pb − 3) + 3pb) + pb − 4)

4((α− 6)d(d+ 1)− 1)(2d(αd+ 2) + 1)

For this function, it is the case that ∂π̃b(pb)
∂pb

> 0 when pb > pTb and ∂π̃b(pb)
∂pb

< 0 when pb < pTb .

17



Figure 6: Coercive Strategies with Linear Punishment
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Notes: Panel (a) shows prices and Panel (b) shows profits under Bertrand competition with simultaneous
pricing, coercion in which the faster firm uses a linear punishment rule and has full commitment (βγ = 1),
and joint profit maximization. In the coercion case, the firms simultaneously set prices at the beginning
of the period and then the fast firm can react with lag α. Assumes d = 1 under linear demand given by
equation (10).

Thus, gradient learning convergence to the optimum will yield the target prices. □

We depict the solution in Figure 6 using the linear demand system when d = 1. Panel (a)

displays prices for different values of α. The fast firm prices are in the solid blue line. They

are consistently higher than the Bertrand prices, and they increase with faster pricing (lower

α). The fast firm’s price is lower than the slow firm’s price when the relative pricing reaction

time is sufficiently small. These patterns are similar to the non-linear coercive strategies from

the previous section (Figure 3). However, given the linear restriction on punishment, the fast

firm cannot coerce its slow rival to set prices higher than the collusive price, indicating that the

linearity of the strategies does limit the degree to which prices increase.

Panel (b) of Figure 6 displays the profits. Profits for the fast firm are declining in α, but

profits for the slow firm are non-monotonic. With a fast enough reaction time, the fast firm can

make higher profits than (its share of) the full collusion profits, even with the linear restric-

tion. With α = 0, the slow firm earns higher profits than in the case with coercive non-linear

strategies (Figure 3).

6 Extension to N -Firm Oligopoly

Throughout the paper, we consider the case where a fast firm faces a single, slower rival. It is

straightforward to extend the results to a more general setting in which a single fast firm faces

N − 1 naive slower rivals that all have the same pricing frequency. Thus, the reaction time α
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characterizes the reaction time that the faster firm has relative to each of the slower firms.

To extend the results, note that the profit function for any focal slow firm i can be written

as

πb(pi, pa, {sb}) (22)

where {sb} is the set of strategies of all other slower rivals. Under the assumption that the

slower rivals are naive, all of the slower firm pricing decisions will be made independently

holding fixed the strategies of rivals.

For a given price vector, we can define π̃i(pi, pa) = πb(pi, pa, {sb}) for each slow firm and

construct the relevant incentive compatibility conditions given the reaction time of the faster

firm. Because the addition of these rivals does complicate the problem for the myopic firms,

it is straightforward to modify the general problem from Section 4 to incorporate the target

prices for additional firms and additional incentive compatibility constraints. As in our baseline

model, maintaining a punishment function that is equal to the one-shot best response can yield

unique equilibria. More generally, the sophisticated firm could potentially obtain even higher

profits when it can specify an idiosyncratic reaction to individual deviations from each rival.

7 Conclusion

Asymmetries in pricing technology expand the set of equilibrium strategies that yield supra-

competitive profits. A firm with faster pricing may incentivize a slower firm to set prices that

maximize joint profits even when the slower firm is myopic, memoryless, or non-strategic.

Thus, a firm with a pricing speed advantage can unilaterally—without the cooperation of its

rivals—obtain identical outcomes to those obtained from collusion.

Firms with faster pricing may not want to induce the joint profit maximizing outcome. We

characterize the set of coercive strategies that use punishment to maximize the faster firm’s

profits. This provides a different equilibrium, with prices that typically differ across firms even

when profit functions are symmetric. The use of coercive strategies can be worse for consumers

than joint profit maximization.

Overall, our results suggest a broader scope for firms to strategically increase prices. Sophis-

ticated firms may be able to manipulate their rivals into setting prices above the competitive

levels even when characteristics of the market would rule out traditional collusive strategies,

such as short-termism or large differences in prices among similar firms. There is an opportu-

nity for future research to examine the extent to which pricing strategies and algorithms used

in practice may raise prices based on the features we identify here.
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Appendix

A Additional Figures

Figure A-1: Prices and Profits with Coercive Trigger Strategies
With Partial Commitment (βγ = 0.5)
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(b) Profits

0 0.2 0.4 0.6 0.8 1
Relative Pricing Reaction Time (,)

0.7

0.8

0.9

1

1.1

1.2

1.3

P
ro
-
t

Bertrand competition
Coercion (-rm a)
Coercion (-rm b)
Joint pro-t max

Notes: Panel (a) shows prices and panel (b) shows profits under Bertrand competition with simultaneous
pricing, coercion in which the faster firm uses a trigger strategy to maximizes its own profits with partial
commitment (βγ = 0.5), and joint profit maximization. The firms simultaneously set prices at the beginning
of the period and then the fast firm can adjust price with reaction time α. Assumes d = 1 under linear demand
given by equation (10).
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Figure A-2: Prices and Profits with Coercive Trigger Strategies by Level of Commitment
With Intermediate Reaction Time (α = 0.5)
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(b) Profits
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Notes: Panel (a) shows prices and panel (b) shows profits under Bertrand competition with simultaneous
pricing, coercion in which the faster firm uses a trigger strategy to maximizes its own profits with α = 0.5,
and joint profit maximization. The firms simultaneously set prices at the beginning of the period and then
the fast firm can adjust price with reaction time α = 0.5. Assumes d = 1 under linear demand given by
equation (10).

Figure A-3: Prices and Profits with Coercive Trigger Strategies
With No Commitment (βγ = 0)

(a) Price

0 0.2 0.4 0.6 0.8 1
Relative Pricing Reaction Time (,)

1

1.5

2

2.5

P
ri
ce

Bertrand competition
Coercion (-rm a)
Coercion (-rm b)
Joint pro-t max

(b) Profits
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Notes: Panel (a) shows prices and panel (b) shows profits under Bertrand competition with simultaneous pric-
ing, coercion in which the faster firm uses a trigger strategy to maximizes its own profits with no commitment
(βγ = 0), and joint profit maximization. The firms simultaneously set prices at the beginning of the period
and then the fast firm can adjust price with reaction time α. Assumes d = 1 under linear demand given by
equation (10).
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Figure A-4: Prices and Profits with Coercive Trigger Strategies by Level of Commitment
With Simultaneous Timing (α = 1)
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(b) Profits
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Notes: Panel (a) shows prices and panel (b) shows profits under Bertrand competition with simultaneous
pricing, coercion in which the faster firm uses a trigger strategy to maximizes its own profits with α = 1, and
joint profit maximization. Assumes d = 1 under linear demand given by equation (10).

Figure A-5: Firm b Profits by Pricing Speed and Commitment

Notes: Shows profit regions of firm b for different values of reaction time (α) and commitment (βγ). Region
II indicates profits greater than sequential follower, region III indicates profits greater than sequential leader,
and region IV indicates profits greater than under Bertrand competition. Assumes d = 1 under linear demand
given by equation (10).
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Figure A-6: Consumer Surplus by Pricing Speed and Commitment

Notes: Shows profit regions of firm b for different values of reaction time (α) and commitment (βγ). Re-
gion I indicates consumer surplus less than under collusion, region II indicates consumer surplus less than
the sequential equilibrium, and region III indicates consumer surplus less than under Bertrand competition.
Assumes d = 1 under linear demand given by equation (10).
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